
関数 y=f(x) のグラフを書くには,まず first derivative(一次導関数)f'(x)を求め,f'(x)=0 となる点,すなわち stationary point(停留点)(critical point = 臨界点ともいいます)を求め,次に sign chart を書き,first derivative test(一階微分判定法)をするという手順になります.
[First derivative test]
Suppose f(x) is continuous at a stationary point x0.
1. If f'(x)>0 on an open interval extending left from x0 and f'(x)<0 on an open interval extending right from x0, then f(x) has a local maximum (possibly a global maximum) at x0.
2. If f'(x)<0 on an open interval extending left from x0 and f'(x)>0 on an open interval extending right from x0, then f(x) has a local minimum (possibly a global minimum) at x0.
3. If f'(x) has the same sign on an open interval extending left from x0 and on an open interval extending right from x0, then f(x) has an inflection point at x0.
(WolframMathWorld)

少し複雑な関数になると,second derivative test(二階微分判定法)で,曲線の凹凸も判定します.日本語との大きな違いは,上に凸とか下に凸ではなく,concave downward(下に凹),concave upward(上に凹)という言い方をすることです.これをconcavity といいます.上にへこんでいるとか下にへこんでいるとか言うのはちょっと変な感じがしますね.
